

(Following Paper ID and Roll No. to be filled in your Answer Book)										
PAPER ID : 121407										
Roll No.										

B. Tech.

(SEM. IV) THEORY EXAMINATION, 2014-15 ELECTRICAL & ELECTRONICS ENGINEERING MATERIALS

Time: 2 Hours]

[Total Marks: *50

- 1 Attempt any three parts of the followings: 5×3=15
 - (a) What is Atomic Packing factor? Calculate its value for simple cube and body centered cube.
 - (b) Show in diagram the (III) planes of a cubic lattice. Calculate their interplanar distance. And also calculate the Bragg angle if (III) planes of a cubic

$$(a=3.57\text{\AA}^{\circ})$$
 crystal are exposed to X-range

(wavelength is $1.57A^{\circ}$).

- (c) Explain with simple sketches the following:
 - (i) Edge dislocation
 - (ii) Screw dislocation
- (d) What is Forbidden energy gap? Classify insulators, semiconductors and conductors on the basis of energy band diagram.

- 2 Attempt any three parts of the followings: 5×3=15
 - Determine the temperature coefficient of resistance of material used in resistor if the resistance at 25°C is 50 ohms and at 70°C is 57.2 ohms.
 - (b) Explain thermal conductivity and obtain an expression for coefficient of thermal conductivity.
 - (c) Explain in brief the zone theory of solids.
 - (d) State the following thermo-electric effects
 - (i) Seeback effect
 - (ii) Peltier effect
 - (iii) Conduction effect
- Attempt any two parts of the followings: 5×2=10
 - (a) What is Hall effect?
 The resistivity of semiconductor material was known to be 0.0082 Ωm at room temperature.
 The flux density in the Hall model was 0.48 wh/m²
 - (b) Explain the working principle of a MOSFET. Discuss also the types of MOSFET and their working.
 - (c) Discuss the volt-ampere characteristics and the application of the following semiconductors.
 - (i) Zener diode
 - (ii) Tunnel diode.

- 4 Attempt any two parts of the followings:
 - (a) Explain briefly any three of the following magnetic hard materials:
 - (i) Tungsten steel
 - (ii) Cobalt steel
 - (iii) Chromium steel
 - (iv) Alnico.
 - (b) Explain the phenomenon of magnetostriction with particular reference to iron and nickel. Mention major application of magnetostrictive materials.
 - (c) Explain the Ferromagnetism.

The hysteresis loop of a specimen of iron weighing 10 kg is equivalent in area of 255 joules/m³ of iron. Find the loss of energy per hour at the rate of 50 c/s. Assume the density of iron as 7500 kg/m³.

3

 $5 \times 2 = 10$